Tyre Basics - Passenger Car Tyres

Introduction

Steps in the Development of the Pneumatic Tyre:
Coming a Long Way

The Inside Story
Material inside a tyre
Tyre Components
Components and Their Functions

Tyre Production
- A Glance Around the Factory

The Outside of a Tyre
Information on the Sidewall
Tread Pattern

Tyre Tips
Tyre Selection/Service Description
Inflation Pressure
Winter Tyres
Tyre Storage
Wheels and Rims

Copyright © 2005 Continental AG
All rights reserved.

TDC 06/2005
0130 1441
Introduction

The tyre is a complex technical component of today's motor cars and must perform a variety of functions. It must cushion, dampen, assure good directional stability, and provide long-term service.

Most important of all, however, is that it must be capable of transmitting strong longitudinal and lateral forces (during braking, accelerating and cornering manoeuvres) in order to assure optimal and reliable roadholding quality. It must be able to do all of this even when the road provides little traction in wet or slippery conditions or when the road is covered with snow or ice.

In certain cases, these wide ranging demands leave tyre engineers no choice but to settle for a compromise between opposing characteristics.

Vehicles with powerful engines require, for example, good grip – particularly on wet and flooded roads.

On the other hand, a corresponding improvement in the tread compound can affect tyre life, rolling resistance and ride comfort (see diagram).

One point, however, has absolute priority over all other tyre design objectives, and that's safety.

Steps in the Development of the Pneumatic Tyre

The wheel, as such, is not a natural phenomenon. And yet it isn't invented in the modern sense of the word. For more than 5,000 years, the wheel has been reinvented at different times and in different regions to meet current transportation needs.

In its earliest forms, for example, used in Mesopotamia or ancient Egypt, the wheel was made as a solid disc with three segments held together by circular pieces of metal or leather. The principle of a disc revolving on an axis was known from pottery making – the wheel is thus an early example of technology transfer. (Contrary to wide misconception, the wheel did not evolve from the use of tree trunk slabs cut horizontally because they're neither round nor durable enough for such purposes.)

These awkward and clumsy wooden disc wheels were later developed into spoked wheels, but only for more superior vehicles like war or ritual chariots. Spoked wheels were lighter, stronger and more stable – but they were also much more technologically sophisticated. The felons often had large-headed nails to prolong the wheel's life.

Spoked wooden wheels lasted until the modern era of coaches, and then usually with iron tyres. Even the first Benz motor car introduced in 1886, which was basically a motorised carriage, still had spoked wooden wheels, albeit with solid rubber tyres.
The pneumatic tyre was invented later, firstly for bicycles (Dunlop 1888) and subsequently for automobiles. In 1898 Continental started producing so called “pneumatics”, tyres capable of giving a more comfortable (cushioned) ride and enabling automobiles to travel at higher speeds.

Continental also made a significant contribution towards further technical advances of the pneumatic tyre:

From 1904 onwards, tyres featured a tread pattern (see page 20) and were given their typical black colour. The addition of carbon black made tyres tougher and more durable.

Around 1920 the cord tyre came from the U.S.A. (see page 7). This tyre had a body made of cotton cord which was more resilient, less susceptible to punctures, and longer-lasting. The low-pressure tyre or “balloon” (inflated at just under 3 bar instead of the previous 5 bar or more) was invented in the mid-1920s. It was followed in the 1940s by the “super balloon” tyre which had a larger volume of air and better comfort.

In the early 1950s the steel radial tyre (see page 9) set new standards in mileage and handling performance. By 1970 the former cross-ply tyre had disappeared from the passenger car market (this didn’t apply to truck tyres however). Low profile tyres were invented at the same time, and 70% profile tyres were followed within just a few years by the 60% and 50% profile tyres (see illustration page 6).

A height-width ratio of 65% is standard for many vehicles today and modern tyres are getting even wider – now having a height-width ratio as low as 25%. These ultra-low-profile tyres are, however, built for special high performance cars.

Modern passenger car radials are made of up to 25 different structural parts and as many as 12 different rubber compounds.

The main structural elements are the casing and the tread/belt assembly.

The casing cushions the tyre and contains the required volume of air. In fact, the air is the load carrier, not the tyre. The tread/belt assembly provides a minimal rolling resistance, optimal handling and a long service life.

In the early days of tyre development, the casing was made of square woven linen fabric embedded in rubber. However, the crossed threads of the fabric cut away at each other, resulting in a relatively short tyre life.

This prompted Continental to introduce in 1923 a new cord fabric. This featured a unidirectional arrangement of cords held in place by supporting threads and embedded in rubber. Tyres incorporating the new fabric lasted much longer.
Cross-ply tyres (until about 1970)
The casing of a cross-ply tyre consists of a number of rubberised cord plies with edges wrapped around the bead wire (the bead ensures that the tyre sits firmly on the rim).

The number of plies determines the load capacity of the tyre. Cross-ply tyres for passenger cars generally had between two and six rayon or nylon cord plies. Even today, van tyres are said to have a 6 or 8 PR (ply rating = load carrying capacity based on the number of plies).

The individual cord plies of a cross-ply tyre are arranged in a criss-cross pattern at a certain angle – known as the cord angle. This angle determines the tyre’s characteristics. An obtuse cord angle, for example, gives better ride comfort but reduces lateral stability. An acute cord angle increases directional stability at the expense of ride comfort.

Modern radial tyres (since 1968)
In modern car engineering, the radial – or belted – tyre has completely replaced the cross-ply tyre.

The cords in a radial tyre casing run perpendicular to the direction of travel. Viewed from the side, the cords run radially - giving the tyre its name. The weakness of this arrangement is that the cords cannot sufficiently absorb lateral forces when cornering or circumferential forces when accelerating. To compensate this, the cords must be supported or complemented by other structural elements.

The belt assembly comprises several layers of steel belt plies arranged in diagonally opposing directions at a specified angle. The belt assembly provides support and stability to the tread area so that the forces in the 3 principal planes can be transmitted efficiently. Many tyres are additionally stabilised by a nylon cap ply.

State-of-the-art technology: runflat tyres
With the new SSR* runflat tyres from Continental, driving has become considerably safer and more convenient:

- A tyre failure can be dealt with easily and without stress
- The vehicle remains mobile – for a distance up to 80 kilometres and at a speed of up to 80 km/h
- SSR tyres fit on existing standard rims
- The heavy and bulky spare wheel is no longer necessary

The SSR tyre concept is based upon self-supporting, reinforced sidewalls. In the case of tyre failure, it prevents the sidewalls from getting underneath the rim where they would be destroyed. It is possible to keep driving, even if the tyre has lost pressure entirely. SSR tyres may however be used only on vehicles equipped with a tyre pressure monitoring system. Visit our site at www.conti-ssr.co.uk for latest information.

* SSR stands for Self Supporting Runflat Tyre
The components of a modern radial tyre for passenger cars contain diverse ingredients in differing amounts. These ingredients vary by tyre size and tyre type (summer or winter tyre). The example below shows the ingredients used in the summer tyre 205/55 R 16 91W ContiPremiumContact. (The tyre shown here weighs about 9.3 kg without the rim.)

Breakdown of Ingredients

- **1. Rubber** (natural and synthetic rubber) 41%
- **2. Fillers** (carbon black, silica, carbon, chalk ...) 30%
- **3. Reinforcing materials** (steel, rayon, nylon) 15%
- **4. Plasticizers (oils and resins)** 6%
- **5. Chemicals for vulcanisation** (sulphur, zinc oxide, various other chemicals) 6%
- **6. Chemicals as antioxidants** (to counter ozone effects and material fatigue) 1%
- **7. Miscellaneous** 1%

A modern tyre is made up of:

- **Tread/belt assembly** consisting of
 - **Tread** – for good road grip and water expulsion
 - **Jointless cap plies** – enable high speeds
 - **Steel-cord belt plies** – optimise directional stability and rolling resistance

- **Casing, consisting of**
 - **Textile cord ply** – keeps the tyre in shape even with high inflation pressure
 - **Inner liner** – makes the tyre airtight
 - **Side wall** – protects from lateral damage
 - **Bead apex** – promotes directional stability, steering performance and comfort level
 - **Bead core** – ensures firm seating on the rim
 - **Bead reinforcement** – promotes directional stability and precise steering response

The functions of the individual components are explained on the next two pages.
Components and Their Functions

Tread/Belt Assembly

1. **Tread**
 - **Material**: Synthetic and natural rubber
 - **Functions**
 - Cap: provides grip on all road surfaces, wear-resistance and directional stability
 - Base: reduces rolling resistance and damage to the casing
 - Shoulder: forms an optimal transition from the tread to the sidewall

2. **Jointless cap plies**
 - **Material**: Nylon, embedded in rubber
 - **Functions**
 - Enhances high-speed suitability and manufacturing precision

3. **Steel-cord for belt plies**
 - **Material**: High-strength steel cords
 - **Functions**
 - Enhances shape retention and directional stability
 - Reduces the rolling resistance
 - Increases the tyre's mileage performance

4. **Textile cord ply**
 - **Material**: Rayon or polyester (rubberised)
 - **Functions**
 - Contains the tyre's inflation pressure

5. **Inner liner**
 - **Material**: Butyl rubber
 - **Functions**
 - Seals the air-filled inner chamber
 - Acts as a tube in modern tubeless tyres

6. **Side wall**
 - **Material**: Natural rubber
 - **Functions**
 - Protects the casing from lateral damage and atmospheric conditions

7. **Bead apex**
 - **Material**: Synthetic rubber
 - **Functions**
 - Enhances directional stability
 - Gives steering precision
 - Improves comfort

8. **Bead core**
 - **Material**: Steel wire embedded in rubber
 - **Functions**
 - Ensures that the tyre sits firmly on the rim

9. **Bead reinforcement**
 - **Material**: Nylon, aramid
 - **Functions**
 - Enhances directional stability
 - Gives steering precision
Tyre Production - A Glance Around the Factory

Each individual stage of production – from the inspection of the raw materials through to delivery of the finished tyre – is subject to ongoing quality control.
The typical stages of production in a modern tyre factory are illustrated on the two previous pages.

Supplier industry and compound production

Various branches of industry supply the tyre industry with raw materials which are pre-treated and further processed into individual semi-finished products:

The steel industry supplies high-strength steel. This serves as the starting material for the manufacture of steel belts (steel cord) and of bead cores (steel wire).

The chemical industry supplies a multitude of raw materials and supplies. The main ones are synthetic rubber and materials used, for instance, to reduce wear, increase grip and lengthen the life of the tyre.

Natural rubber is extracted by cutting into the bark of special trees grown in large plantations. The milky fluid (latex) that flows out coagulates when acid is added to it. It is then cleaned with water and pressed into solid bales for easier transportation and storage.

The textile industry supplies base materials (rayon, nylon, polyester and aramid fibres) for the manufacture of cord which serve as a reinforcing material in tyres.

Bales of natural and synthetic rubber are sectioned, cut into portions, weighed and mixed with other ingredients in accordance with specially defined recipes.

Up to twelve different rubber compounds are used today in the various integral components of modern passenger car tyres. (*)

Manufacture of semi-finished products

Steel cord

Pre-treated steel cord is supplied on wire spools and fed into a calender via special spoolers. In the calender, the steel cord is embedded in one or more layers of rubber. This continuous sheet of cord and rubber is then cut at a defined angle to the right length for the tyre size and rolled up for further processing.

Tread

The kneadable material previously blended in the mixer is shaped into an endless strip by means of a screw-type extruder.

After extrusion, the weight per metre is checked and the tread cooled by immersion. The tread strip is cut to length for the tyre size and a unit weight control is carried out.

Textile cord

A multitude of textile threads are fed into the calender via a special winding device. There they are embedded in a thin layer of rubber. This endless sheet is then cut to the desired width at a 90° angle relative to the direction of travel and rewound for further processing.

Steel bead

The core of a tyre’s bead is made up of several individually rubber-coated steel wires formed into a hoop. This hoop is then provided with a rubber apex.

Sidewall/inner liner

Sidewall sections cut to suit the particular tyre size and exhibiting various geometries are turned out with the extruder. A calender forms the airtight inner liner into a wide, thin layer.

Building and vulcanisation

The various semi-finished products discussed in the previous stages come together on the tyre building machine and are assembled (built) into what is known as a “green tyre” in two stages (casing and tread/belt assembly).

Prior to vulcanisation the “green tyre” is sprayed with a special fluid. In the curing press it then receives its final shape after being vulcanised for a certain time at a certain pressure and temperature. During the process, the raw rubber undergoes a change in its physical properties to become rubber. Also, the press moulds are engraved to give the tyre its tread pattern and sidewall markings.

Final quality control and shipment

After vulcanisation the tyres undergo visual inspection and X-raying, as well as various tyre uniformity checks. Once the tyres have passed all the checks and inspections they are sent to the distribution warehouse for shipment.

(*) Individual tyre components and their functions are described in detail on pages 12 and 13.
Tyre Basics - Passenger Car Tyres

Sidewall Markings – Standard and Required By Law

1. Manufacturer (trademark or logo)
2. Product name
3. Size designation
 - 205 = Tyre width in mm
 - 55 = Height-to-width ratio in percent
 - R = Radial construction
 - 16 = Rim diameter in inches (code)
4. Load index
 - (see also page 22)
5. Speed index
 - (see also page 22)
6. SSR = Special designation SSR for runflat tyres (Self Supporting Runflat)
7. Tubeless
8. Continental tyres are marked in accordance with international regulations. So the sidewall is marked with a circle containing an E and the number of the country of homologation. This marking is followed by a multi-digit homologation number, e.g., E4 (4 = Netherlands)
9. Approval number as per ECE R 30
10. Manufacturer's code:
 - Tyre factory, tyre size and type
 - Date of manufacture (week/year)
 - 2205 means the 22nd week of 2005
11. Department of Transportation
 - U.S. department which oversees tyre safety standards
12. T.W.I.: Tread Wear Indicator. Bar-like protuberances at several points of the longitudinal tread grooves which appear once tread depth wears down to 1.6 mm (see also page 21)

Abbreviations

- DOT = U.S. Department of Transportation
- ETRTO = European Tyre and Rim Technical Organisation, Brussels
- ECE = Economic Commission for Europe (UN institution in Geneva)
- FMVSS = Federal Motor Vehicle Safety Standards (U.S. safety code)
- ECE = Economic Commission for Europe (UN institution in Geneva)
- ETRTO = European Tyre and Rim Technical Organisation, Brussels
- DOT = U.S. Department of Transportation
- ETRTO = European Tyre and Rim Technical Organisation, Brussels
- ECE = Economic Commission for Europe (UN institution in Geneva)
- FMVSS = Federal Motor Vehicle Safety Standards (U.S. safety code)

All other information applies to countries outside Europe:

- Country of manufacture
- U.S. load index for max. Load Rating (615 kg per wheel = 1356 lbs.) where 1 lb. = 0.4536 kg
- Tread: beneath which there are 4 plies
 - 1 rayon ply, 2 steel belt plies, 1 nylon ply
- Sidewall: the tyre casing consists of
 - 1 rayon ply
- U.S. limit for max. inflation pressure 51 psi (1 bar = 14.5 psi)
- USA: tyre manufacturer’s guarantee for compliance with certain quality characteristics on the basis of standardised tests conducted on reference tyres as determined by law
- Treadwear: relative life expectancy of the tyre based on standard U.S. testing
- Traction: A, B or C = wet braking capability of the tyre
- Temperature: A, B or C = temperature stability of the tyre at higher test speeds. C is sufficient to meet U.S. statutory requirements
- Identification for Brasil
- Identification for China
Tyre Basics - Passenger Car Tyres

Tread Pattern

The first pneumatic tyres had a smooth-tread with no pattern. As automobiles became faster, however, there were increased problems with handling characteristics and road safety. Therefore, as early as 1904, Continental developed the first automobile tyre with a tread pattern.

Since then, tread patterns have been continuously developed and optimised to incorporate, for example, ingenious tread block geometry, fine siping techniques and asymmetrical forms.

Today, smooth-tread tyres or “slicks” are only found in motor racing. Tyres used on public roads must have a tread pattern by law. The main job of the tread pattern is to expel water which can affect the tyre's contact with the road in wet conditions. In addition the tread pattern, especially that of winter tyres, provides grip and adhesion.

On wet roads at high speeds, a wedge of water can build up between the tyre and the road surface. The tyre may then start to lose road contact or aquaplane, and the vehicle can no longer be steered.

Sufficient tread depth is vital not only in such extreme situations. Even at low speeds, there is a greater risk of having an accident in wet weather if the tyres are worn.

The table below shows just how important the amount of remaining tread is. The braking distance for a worn tyre with a tread depth of 1.6 mm is almost twice as long as for a new tyre with about 8 mm tread depth.

Tyres must have tread grooves or slots over their entire tread circumference and width. Tread depth measurements must be taken in the main grooves which feature TWIs** on modern tyres.

In most European countries the law specifies a minimum tread depth of 1.6 mm; that’s when tyres have to be replaced. In the interest of their own safety, car drivers should replace their tyres before this advanced stage of wear - at a remaining tread depth of 2 mm, low-profile tyres at 3 mm and winter tyres at 4 mm.

Also, all four wheel positions should be fitted with tyres of the same tread pattern design**), and each axle, at least, should have tyres with the same tread depth.

Regrooving of passenger car tyres is prohibited.

The table below shows just how important the amount of remaining tread is. The braking distance for a worn tyre with a tread depth of 1.6 mm is almost twice as long as for a new tyre with about 8 mm tread depth.

Tyres must have tread grooves or slots over their entire tread circumference and width. Tread depth measurements must be taken in the main grooves which feature TWIs** on modern tyres.

In most European countries the law specifies a minimum tread depth of 1.6 mm; that’s when tyres have to be replaced. In the interest of their own safety, car drivers should replace their tyres before this advanced stage of wear - at a remaining tread depth of 2 mm, low-profile tyres at 3 mm and winter tyres at 4 mm.

Also, all four wheel positions should be fitted with tyres of the same tread pattern design**), and each axle, at least, should have tyres with the same tread depth.

Regrooving of passenger car tyres is prohibited.

** Tread depth required by law

*** TWI = Tread Wear Indicator, bar-like protuberances in the longitudinal grooves which appear at a remaining tread depth of 1.6 mm

**** Recommendation: One should avoid mixing summer and winter tyres in particular, which is even illegal in some European countries. See section on “Winter tyres”.

Tread depth/braking distance

<table>
<thead>
<tr>
<th>Tread depth (mm)</th>
<th>Braking distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Long braking distance on worn tyres</td>
</tr>
</tbody>
</table>

Long braking distance on worn tyres
Tyre Selection

Tyre sizes which have been approved for a vehicle are specified in the vehicle's documents. Each tyre must be suitable for the vehicle. This applies to its outer dimensions (diameter, width) which are indicated in the tyre's standardised size designation (see page 19).

Also, the tyre must comply with the vehicle's requirements in terms of weight and speed.

As far as weight is concerned, tyre selection is based on the maximum permissible axle load which is distributed among two tyres. The maximum load capacity of a passenger car tyre is indicated by its load index.

Axle geometry aspects of a vehicle, like camber and toe-in, are likewise important when choosing tyres.

Load index (LI) and maximum load per individual tyre

<table>
<thead>
<tr>
<th>LI</th>
<th>kg</th>
<th>LI kg</th>
<th>LI kg</th>
<th>LI kg</th>
<th>LI kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>110</td>
<td>69</td>
<td>325</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>190</td>
<td>69</td>
<td>325</td>
<td>88</td>
<td>560</td>
</tr>
<tr>
<td>20</td>
<td>70</td>
<td>335</td>
<td>99</td>
<td>580</td>
<td>108</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>345</td>
<td>90</td>
<td>600</td>
<td>109</td>
</tr>
<tr>
<td>40</td>
<td>90</td>
<td>355</td>
<td>91</td>
<td>615</td>
<td>110</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>365</td>
<td>92</td>
<td>630</td>
<td>111</td>
</tr>
<tr>
<td>60</td>
<td>110</td>
<td>375</td>
<td>93</td>
<td>650</td>
<td>112</td>
</tr>
<tr>
<td>70</td>
<td>120</td>
<td>385</td>
<td>94</td>
<td>670</td>
<td>113</td>
</tr>
<tr>
<td>80</td>
<td>130</td>
<td>395</td>
<td>95</td>
<td>690</td>
<td>114</td>
</tr>
<tr>
<td>90</td>
<td>140</td>
<td>405</td>
<td>96</td>
<td>710</td>
<td>115</td>
</tr>
<tr>
<td>100</td>
<td>150</td>
<td>415</td>
<td>97</td>
<td>730</td>
<td>116</td>
</tr>
<tr>
<td>110</td>
<td>160</td>
<td>425</td>
<td>98</td>
<td>750</td>
<td>117</td>
</tr>
<tr>
<td>120</td>
<td>170</td>
<td>435</td>
<td>99</td>
<td>775</td>
<td>118</td>
</tr>
<tr>
<td>130</td>
<td>180</td>
<td>445</td>
<td>100</td>
<td>800</td>
<td>119</td>
</tr>
<tr>
<td>140</td>
<td>190</td>
<td>455</td>
<td>101</td>
<td>825</td>
<td>120</td>
</tr>
<tr>
<td>150</td>
<td>200</td>
<td>465</td>
<td>102</td>
<td>850</td>
<td>121</td>
</tr>
<tr>
<td>160</td>
<td>210</td>
<td>475</td>
<td>103</td>
<td>875</td>
<td>122</td>
</tr>
<tr>
<td>170</td>
<td>220</td>
<td>485</td>
<td>104</td>
<td>900</td>
<td>123</td>
</tr>
<tr>
<td>180</td>
<td>230</td>
<td>495</td>
<td>105</td>
<td>925</td>
<td>124</td>
</tr>
<tr>
<td>190</td>
<td>240</td>
<td>505</td>
<td>106</td>
<td>950</td>
<td>125</td>
</tr>
</tbody>
</table>

Correct choice of tyre also includes the speed rating: the tyre’s maximum speed must be at least equivalent to that of the vehicle, plus tolerance*). The maximum permissible speed (at full load) of a tyre is indicated by its speed index or speed symbol.

Together, the load index and speed index make up the service description for a passenger car tyre. This description is an official part of the complete, standardised size designation appearing on each tyre and must conform to the information given in the vehicle documents.

The dimensions and technical properties of SSR runflat tyres correspond to those of standard tyres of the same size and construction. SSR tyres may however only be mounted on vehicles with a tyre pressure monitoring system. A tyre mix should not be fitted on a vehicle since each axle position then does not have the runflat properties provided by SSR tyres.

Speed index (SI)

<table>
<thead>
<tr>
<th>SI</th>
<th>Maximum speed for passenger car tyres</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>150 km/h / 93 mph</td>
</tr>
<tr>
<td>K</td>
<td>160 km/h / 99 mph</td>
</tr>
<tr>
<td>L</td>
<td>170 km/h / 106 mph</td>
</tr>
<tr>
<td>M</td>
<td>180 km/h / 112 mph</td>
</tr>
<tr>
<td>N</td>
<td>190 km/h / 118 mph</td>
</tr>
<tr>
<td>O</td>
<td>210 km/h / 130 mph</td>
</tr>
<tr>
<td>P</td>
<td>240 km/h / 150 mph</td>
</tr>
<tr>
<td>Q</td>
<td>270 km/h / 160 mph</td>
</tr>
<tr>
<td>R</td>
<td>300 km/h / 187 mph</td>
</tr>
<tr>
<td>ZR</td>
<td>exceeding 240 km/h / 150 mph</td>
</tr>
</tbody>
</table>

*) Exception: winter tyres, see page 24.

Tyre Inflation Pressure

Modern tubeless passenger-car tyres have nothing in common with their predecessors dating from the start of last century – apart from the basic principle of being pneumatically and containing compressed air. It is the pressure inside that gives the tyre its stability and load-carrying ability combined with the necessary elasticity.

Correct tyre pressure is vital for correct vehicle operation in different service conditions (loads, speeds). The optimal tyre pressure is defined in close consultation between the tyre and vehicle manufacturers. It is stated in the user manual and/or indicated on the vehicle itself (on the inside of the fuel tank flap, for instance).

Tyre inflation pressure must be adjusted to suit various loads and operating conditions. It should always be checked when the tyres are cold. As inflation pressure always increases when the tyres are warm, air must never be released. Insufficient inflation pressure puts stress on the tyre and leads to excessive heat build-up in the flexing zone which then results in tyre damage. The inflation pressure must always be the same for all tyres on any one axle, but it can vary from axle to axle (on the front and rear axles, for example). The pressure should be checked regularly about every 2 weeks, or before taking a long journey (driving at high speed, with heavy luggage). An inflation level inappropriate to the amount of stress the tyre must withstand can have a considerable negative effect on the vehicle’s handling.

Pressure checks must also include the spare which should be inflated 0.5 bar in excess of the usual recommendation for use in an emergency.

Add an extra 0.2 bar to the inflation pressure of winter tyres. This compensates for the lower outside temperatures during the winter months.

Valve caps must be screwed firmly into place as they protect the valve from dust and dirt. Missing valve caps must be replaced immediately. Major losses of air between tyre pressure checks indicate damage. A qualified tyre fitter should be asked to investigate and eliminate the problem.
Winter Tyres

Continental developed the first prototypes of a special winter tyre for use on snow and ice as early as 1914. Continental’s first series-made winter tyres were launched in 1952.

Early winter tyres had massive bars, they were loud, hard and, by today’s standards, only moderately suitable for winter use. Also, they could only be driven at relatively low speeds.

The real market breakthrough for winter tyres came with the development of special tread compounds for winter service and modern sipe technology (fine slots in the tread).

Ice, snow and low temperatures need not put motorists at greater risks on the road. By switching to M&S* tyres, one can still maintain a high margin of safety. When it gets cold outside, M&S tyres give superior performance on wet and slippery roads. Winter tyres should be fitted when the temperature drops below 7°C.

It is not recommended to mix summer and winter tyres on passenger cars. In most European countries, motorists are required to fit only summer tyres or only winter (M&S) tyres to any one axle; in Austria** and France this even applies to all four wheel positions.

Top safety in winter can be provided only by true winter tyres on all axle positions (4 tyres).

Snowflake designation (in USA and Canada): This additional marking on an M+S tyre shows that the tyre meets legally prescribed test criteria and ensures good winter properties.

It is vital that winter tyres are always kept inflated at the correct pressure since the volume of air contained in the tyre decreases at very low temperatures.

Why winter tyres?

<table>
<thead>
<tr>
<th>Performance features</th>
<th>winter tyres</th>
<th>summer tyres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Roads</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Wet Roads</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Snow</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ice</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Comfort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolling Noise</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rolling Resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

*) M&S stands for mud and snow
**) Exception: Winter tyres with less than 4 mm tread depth for passenger cars which no longer count as winter tyres.
***) Not applicable in the UK

Depending on the type and designation, the maximum speed for winter tyres is 100 mph (160 km/h – speed index Q), 118 mph (190 km/h – speed index T), 130 mph (210 km/h – speed index H), 150 mph (240 km/h – speed index V) or, as of recently, 168 mph (270 km/h – speed index W). Vehicles designed for higher speeds than the respective winter tyres must exhibit a sticker – clearly within the driver’s range of view – citing the maximum permissible speed for the M&S tyres**.

The most important property of any type of tyre is grip. Which is why winter presents such a challenge. When it comes to choosing the perfect winter tyre, there are three key factors to consider. Only if all three are integrated correctly will a tyre be suitable for the diverse conditions that winter has in store.

Tyre compound
Normal tyre compounds begin to harden and lose grip below 7°C. Thanks to their exceptionally high proportion of natural rubber, winter tyres continue to offer outstanding flexibility and grip even in the coldest of temperatures.

Tread pattern
The tread pattern used on a winter tyre is particularly effective on snow and slush. In these conditions, the rotation of the wheel presses the snow into the wider grooves used on this type of tyre, thereby generating additional traction.

Sipes
When setting off, rows of fine lateral sipes enable the tread blocks to flex and bite deeper into the ice or snow for better traction.

More grip thanks to more effective tyre compounds
Better traction thanks to deeper contact with snow
Enhanced traction thanks to additional bite

Tyres

Tyre Basics - Passenger Car Tyres

Tyre Basics - Passenger Car Tyres

Tyre Basics - Passenger Car Tyres
What’s the “difference” between a wheel and a rim?

When man began moving heavy loads by rolling them, he started by using logs of trees. Later on, wooden slabs were cut from tree trunks and cut into round discs. These discs had a hole in the centre to accommodate either a rigid or rotating axle. After many intermediate stages, the wheel was given a hub which, in a spoked wheel, was connected with the wheel rim by spokes. In order to protect the wheel from wear it usually had a leather or iron band. It then stayed this way for several centuries.

At the end of the nineteenth century, the motor car came along, and with it the pneumatic tyre, bringing a whole new era. To attach the tyre to the wheel, a steel rim was needed. The first pneumatic tyres were firmly vulcanised on to the rim; later they were fixed to the rim by means of complicated mechanisms, but they were removable. There was further development before reaching today’s conventional method of joining the tyre and rim.

To ensure that the tyre sat firmly on the rim, the latter was equipped with outwardly arching flanges against which the tyre was pressed by compressed air. The basic structure has remained the same since then, although the rim’s cross-sectional shape has changed in the course of further development.

The rim is, therefore, not a wheel but rather part of a wheel. Spokes or a metal nave connect the rim to the vehicle.

Tyre Storage

Although tyre manufacturers add antioxidants to their rubber compounds, this does not stop tyres from ageing and so their physical properties change in the long term.

Correct tyre storage can, however, help keep ageing to a minimum.

When removing the tyre, one should make a note of the wheel position (by chalk marking the tyre “FL” for front left, for example). Certainly when it is time to change from summer to winter tyres, one should use the opportunity to switch the wheels round (from front to back, and vice versa). This results in better economy, particularly in the case of vehicles with front-wheel drive.

Storage place

Cool
- 15°C to 25°C
- Shield tyres from sources of heat
- Minimum distance of 1 m from any heat source

Dry
- Avoid condensation
- Tyres must not come in contact with oil, grease, paint or fuel

Dark
- Protect tyres from direct exposure to sunlight and artificial lighting with a high UV content

Moderately ventilated
- Oxygen and ozone are particularly harmful

Tyres with rims (1 bar)

Do not stand them upright. Hang them.

Or pile them.

Tyres without rims

Do not pile them, do not hang them.

Stand them upright and rotate them every four weeks.

Wrong

Do not pile, do not hang.

Tyre Basics - Passenger Car Tyres

Correct tyre storage can, however, help keep ageing to a minimum.

When removing the tyre, one should make a note of the wheel position (by chalk marking the tyre “FL” for front left, for example). Certainly when it is time to change from summer to winter tyres, one should use the opportunity to switch the wheels round (from front to back, and vice versa). This results in better economy, particularly in the case of vehicles with front-wheel drive.

Storage place

Cool
- 15°C to 25°C
- Shield tyres from sources of heat
- Minimum distance of 1 m from any heat source

Dry
- Avoid condensation
- Tyres must not come in contact with oil, grease, paint or fuel

Dark
- Protect tyres from direct exposure to sunlight and artificial lighting with a high UV content

Moderately ventilated
- Oxygen and ozone are particularly harmful

Tyres with rims (1 bar)

Do not stand them upright. Hang them.

Or pile them.

Tyres without rims

Do not pile them, do not hang them.

Stand them upright and rotate them every four weeks.

Wrong

Do not pile, do not hang.
Wheels and Rims

Rim + wheel nave = disc wheel

For modern vehicle construction, the rim offset is crucial. For this reason it may be altered only slightly, even if changes are made in the axle geometry.

The rim offset (mm) is the distance measured from the centre of the rim of a disc wheel to the inside contact face of the wheel disc, where it presses against the hub flange. This value can be either positive or negative.

There are several rim contours:

1. Drop centre rim (normal)
2. Hump rim = safety contour
3. Ledge rim = safety contour

Thanks to slight curvatures, rims 2. and 3. guarantee the tubeless tyre sits firmly on the rim. Indeed, such rims are absolutely essential for tubeless radial tyres.

Example: 6 1/2 J x 16 H2 B ET 45 (to DIN 7817)
6 1/2 Rim width (in inches)
J Flange type
X Drop centre
16 Diameter (in inches)
H2 Double hump
B Asymmetrical drop centre
ET45 Rim offset in mm

The hump rim is a modern drop centre rim of the kind used on bicycles, motorcycles, passenger cars, agricultural and other commercial vehicles. The drop centre is necessary in fitting the tyre on the rim.